Severe losses attributable to pre-harvest sprouting (PHS) have been reported in Canada in recent years. The genetics of PHS resistance have been more extensively studied in hexaploid wheat and generally not using combinations of elite agronomic parents. The objective of our research was to understand the genetic nature of PHS resistance in an elite durum cross.
Most tetraploid durum wheat (Triticum turgidum L var. durum) cultivars are susceptible to Fusarium head blight (FHB). This study reports novel quantitative trait loci (QTL) associated with FHB resistance. A backcross recombinant inbred line (BCRIL) population was developed from the cross BGRC3487/2*DT735, and 160 lines were evaluated for resistance to Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein. Petch) in field trials over 3 years (2008-2010) and to a F. graminearum 3-acetyl-deoxynivalenol (3-ADON) chemotype in greenhouse trials
he yellow colour of durum wheat (Triticum turgidum L. var durum) semolina is due in part to the presence of carotenoid pigments found in the endosperm and is an important end-use quality trait. We hypothesized that variation in the genes coding for phytoene synthase (Psy), a critical enzyme in carotenoid biosynthesis, may partially explain the phenotypic variation in endosperm colour observed among durum cultivars. Using rice sequence information, primers were designed to PCR clone and sequence the Psy genes from Kofa (high colour) and W9262-260D3 (medium colour) durum cultivars.